Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1334403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357707

RESUMO

Gait disorders are a fundamental challenge in Parkinson's disease (PD). The use of laser-light visual cues emitted from shoes has demonstrated effective in improving freezing of gait within less restrictive environments. However, the effectiveness of shoes-based laser-light cueing may vary among individuals with PD who have different types of impairments. We introduced an innovative laser-light visual shoes system capable of producing alternating visual cues for the left and right feet through one-side cueing at a time, while simultaneously recording foot inertial data and foot pressures. The effects of this visual cueing system on gait patterns were assessed in individuals with PD, both those with well-gait and those with worse-gait. Our device successfully quantified gait characteristics, including the asymmetry in the center of pressure trajectory, in individuals with PD. Furthermore, visual cueing prolonged stride times and increased the percentage of stance phase, while concurrently reducing stride length in PD individuals with well-gait. Conversely, in PD individuals with worse-gait, visual cueing resulted in a decreased freeze index and a reduction in the proportion of intervals prone to freezing episodes. The effects of visual cueing varied between PD individuals with well-gait and those with worse-gait. Visual cueing slowed down gait in the well-gait group while it appeared to mitigate freezing episodes in worse-gait group. Future researches, including enhancements to extend the projection distance of visual cues and clinical assessments conducted in real-world settings, will help establish the clinical utility of our proposed visual cueing system.

2.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400219

RESUMO

Robot-assisted bilateral arm training has demonstrated its effectiveness in improving motor function in individuals post-stroke, showing significant enhancements with increased repetitions. However, prolonged training sessions may lead to both mental and muscle fatigue. We conducted two types of robot-assisted bimanual wrist exercises on 16 healthy adults, separated by one week: long-duration, low-resistance workouts and short-duration, high-resistance exercises. Various measures, including surface electromyograms, near-infrared spectroscopy, heart rate, and the Borg Rating of Perceived Exertion scale, were employed to assess fatigue levels and the impacts of exercise intensity. High-resistance exercise resulted in a more pronounced decline in electromyogram median frequency and recruited a greater amount of hemoglobin, indicating increased muscle fatigue and a higher metabolic demand to cope with the intensified workload. Additionally, high-resistance exercise led to increased sympathetic activation and a greater sense of exertion. Conversely, engaging in low-resistance exercises proved beneficial for reducing post-exercise muscle stiffness and enhancing muscle elasticity. Choosing a low-resistance setting for robot-assisted wrist movements offers advantages by alleviating mental and physiological loads. The reduced training intensity can be further optimized by enabling extended exercise periods while maintaining an approximate dosage compared to high-resistance exercises.


Assuntos
Braço , Robótica , Adulto , Humanos , Terapia por Exercício , Exercício Físico/fisiologia , Extremidade Superior
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082776

RESUMO

Gait disorder is a core problem in individuals with Parkinson's disease (PD), including bradykinesia, shuffling steps, festinating gait, and freeze of gait (FOG). Laser-light visual cueing has been demonstrated to be efficient in the mediation of gaits and the reduction in number of FOG episodes. However, previous approaches commonly adopted independent controls of visual cueing on left and right sides which was prone to produce two cues while individual was not in normal walking. In this study, we developed laser-light visual shoes which produced interlaced visual cues for left and right feet in a manner of one-side cueing at a time, solving the aforementioned problem. With parallel measurement of foot inertial data and foot pressures in each shoe, our results showed that the proposed visual cueing made PD individuals in the on-medication condition walk with a longer stance and swing times, that is, they walked more carefully and stable. The proposed approach can also be used to study kinematic and kinetic characteristics of gaits in the off-medication condition to clarify the mediation of visual cueing on motor control of PD individuals.Clinical Relevance- This demonstrates the effect of laser-light visual cueing on gaits in individuals with Parkinson's disease.


Assuntos
Transtornos Neurológicos da Marcha , Lasers , Doença de Parkinson , Sapatos , Humanos , Sinais (Psicologia) , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação , Caminhada/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação
4.
BMC Sports Sci Med Rehabil ; 15(1): 133, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845733

RESUMO

BACKGROUND: Various neurocognitive tests have shown that cycling enhances cognitive performance compared to resting. Event-related potentials (ERPs) elicited by an oddball or flanker task have clarified the impact of dual-task cycling on perception and attention. In this study, we investigate the effect of cycling on cognitive recruitment during tasks that involve not only stimulus identification but also semantic processing and memory retention. METHODS: We recruited 24 healthy young adults (12 males, 12 females; mean age = 22.71, SD = 1.97 years) to perform three neurocognitive tasks (namely color-word matching, arithmetic calculation, and spatial working memory) at rest and while cycling, employing a within-subject design with rest/cycling counterbalancing. RESULTS: The reaction time on the spatial working memory task was faster while cycling than at rest at a level approaching statistical significance. The commission error percentage on the color-word matching task was significantly lower at rest than while cycling. Dual-task cycling while responding to neurocognitive tests elicited the following results: (a) a greater ERP P1 amplitude, delayed P3a latency, less negative N4, and less positivity in the late slow wave (LSW) during color-word matching; (b) a greater P1 amplitude during memory encoding and smaller posterior negativity during memory retention on the spatial working memory task; and (c) a smaller P3 amplitude, followed by a more negative N4 and less LSW positivity during arithmetic calculation. CONCLUSION: The encoding of color-word and spatial information while cycling may have resulted in compensatory visual processing and attention allocation to cope with the additional cycling task load. The dual-task cycling and cognitive performance reduced the demands of semantic processing for color-word matching and the cognitive load associated with temporarily suspending spatial information. While dual-tasking may have required enhanced semantic processing to initiate mental arithmetic, a compensatory decrement was noted during arithmetic calculation. These significant neurocognitive findings demonstrate the effect of cycling on semantic-demand and memory retention-demand tasks.

5.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991875

RESUMO

Electrocardiogram (ECG) biometric provides an authentication to identify an individual on the basis of specific cardiac potential measured from a living body. Convolutional neural networks (CNN) outperform traditional ECG biometrics because convolutions can produce discernible features from ECG through machine learning. Phase space reconstruction (PSR), using a time delay technique, is one of the transformations from ECG to a feature map, without the need of exact R-peak alignment. However, the effects of time delay and grid partition on identification performance have not been investigated. In this study, we developed a PSR-based CNN for ECG biometric authentication and examined the aforementioned effects. Based on a population of 115 subjects selected from the PTB Diagnostic ECG Database, a higher identification accuracy was achieved when the time delay was set from 20 to 28 ms, since it produced a well phase-space expansion of P, QRS, and T waves. A higher accuracy was also achieved when a high-density grid partition was used, since it produced a fine-detail phase-space trajectory. The use of a scaled-down network for PSR over a low-density grid with 32 × 32 partitions achieved a comparable accuracy with using a large-scale network for PSR over 256 × 256 partitions, but it had the benefit of reductions in network size and training time by 10 and 5 folds, respectively.


Assuntos
Arritmias Cardíacas , Redes Neurais de Computação , Humanos , Arritmias Cardíacas/diagnóstico , Frequência Cardíaca , Biometria , Eletrocardiografia/métodos , Algoritmos
6.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617087

RESUMO

Fall detection and physical activity (PA) classification are important health maintenance issues for the elderly and people with mobility dysfunctions. The literature review showed that most studies concerning fall detection and PA classification addressed these issues individually, and many were based on inertial sensing from the trunk and upper extremities. While shoes are common footwear in daily off-bed activities, most of the aforementioned studies did not focus much on shoe-based measurements. In this paper, we propose a novel footwear approach to detect falls and classify various types of PAs based on a convolutional neural network and recurrent neural network hybrid. The footwear-based detections using deep-learning technology were demonstrated to be efficient based on the data collected from 32 participants, each performing simulated falls and various types of PAs: fall detection with inertial measures had a higher F1-score than detection using foot pressures; the detections of dynamic PAs (jump, jog, walks) had higher F1-scores while using inertial measures, whereas the detections of static PAs (sit, stand) had higher F1-scores while using foot pressures; the combination of foot pressures and inertial measures was most efficient in detecting fall, static, and dynamic PAs.


Assuntos
, Redes Neurais de Computação , Humanos , Idoso , Pressão , Exercício Físico , Sapatos
7.
Front Bioeng Biotechnol ; 10: 829772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309995

RESUMO

The strength of lower extremity is important for individuals to maintain balance and ambulation functions. The previous studies showed that individuals with Parkinson's disease suffered from fatigue and strength loss of central origin. The purpose of this study was to investigate the effect of lower extremities' cycling training on different components of force and fatigue in individuals with Parkinson's disease. Twenty-four individuals (13 males, 11 females, mean age: 60.58 ± 8.21 years) diagnosed with idiopathic Parkinson's disease were randomized into training and control groups. The maximum voluntary contraction (MVC) force, voluntary activation level (VA), and twitch force of knee extensors were measured using a custom-made system with surface electrical stimulation. The general, central, and peripheral fatigue indexes (GFI, CFI, and PFI) were calculated after a fatiguing cycling protocol. Subjects received 8 weeks of low resistance cycling training (training group) or self-stretching (control group) programs. Results showed that MVC, VA, and twitch force improved (p < 0.05) only in the training group. Compared to the baseline, central fatigue significantly improved in the training group, whereas peripheral fatigue showed no significant difference in two groups. The cycling training was beneficial for individuals with Parkinson's disease not only in muscle strengthening but also in central fatigue alleviation. Further in-depth investigation is required to confirm the effect of training and its mechanism on central fatigue.

8.
Front Physiol ; 12: 756200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867459

RESUMO

Background: To investigate the effect and dose-response of functional electrical stimulation cycling (FES-cycling) training on spasticity in the individuals with spinal cord injury (SCI). Method: Five electronic databases [PubMed, Scopus, Medline (Proquest), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)] were searched before September 2021. The human trials and studies of English language were only included. Two authors independently reviewed and extracted the searched studies. The primary outcome measure was spasticity assessed by Modified Ashworth Scale or Ashworth Scale for lower limbs. The secondary outcome measures were walking abilities, such as 6 Min Walk Test (6MWT), Timed Up and Go (TUG), and lower limbs muscle strength (LEMS). A subgroup analysis was performed to investigate the efficacious threshold number of training sessions. A meta-regression analysis was used to examine the linear relationship between the training sessions and the effect on spasticity. Results: A total of 764 studies were identified. After screening, 12 selected studies were used for the qualitative synthesis, in which eight of them were quantitatively analyzed. Eight studies included ninety-nine subjects in total with SCI (male: female = 83:16). The time since injury was from less than 4 weeks to 17 years. The age ranged from 20 to 67 years. American Spinal Injury Association (ASIA) impairment level of the number of participants was 59 for ASIA A, 11 for ASIA B, 18 for ASIA C, and 11 for ASIA D. There were 43 subjects with tetraplegia and 56 subjects with paraplegia. Spasticity decreased significantly (95% CI = - 1.538 to - 0.182, p = 0.013) in favor of FES-cycling training. The walking ability and LEMS also improved significantly in favor of FES-cycling training. The subgroup analysis showed that spasticity decreased significantly only in more than 20 training sessions (95% CI = - 1.749 to - 0.149, p = 0.020). The meta-regression analysis showed training sessions and spasticity were not significantly associated (coefficient = - 0.0025, SE = 0.0129, p = 0.849, R 2 analog = 0.37). Conclusion: Functional electrical stimulation-cycling training can improve spasticity, walking ability, and the strength of the lower limbs in the individuals with SCI. The number of training sessions is not linearly related to the decrease of spasticity. Twenty sessions of FES-cycling training are required to obtain the efficacy to decrease spasticity.

9.
Clin Biomech (Bristol, Avon) ; 87: 105412, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34167043

RESUMO

BACKGROUND: Muscle co-contraction during the execution of motor tasks or training is common in poststroke subjects. EMG-derived muscular activation indexes have been used to evaluate muscle co-contractions during movements. In addition, robot-assisted bilateral arm training provides a repetitive and stable training method to improve arm movements. However, quantitative measures of muscle contractions during this training in poststroke subjects have not been described. METHODS: Seventeen subjects experiencing spastic hemiplegia after a stroke were recruited to perform robot-assisted bilateral wrist flexion and extension movements. The co-contraction index and two new indexes, temporal correlation and cross mutual information, which are derived from the EMGs of working muscles without the need for envelope normalization, are used to quantify intermuscular activation during wrist movements. FINDINGS: Higher temporal correlation as well as higher co-contraction index was demonstrated in the affected muscles, implying the recruitment of muscle co-contractions to complete the movement task. On the other hand, a higher value of cross mutual information was exhibited in the unaffected muscles which was attributed to their distinct, rhythmic muscle contractions. The plot of temporal correlation versus cross mutual information further defined affected, unaffected synergistic, and unaffected agonist-antagonist muscular regions. Moreover, with the modified Ashworth scale, multiple regression models based on the co-contraction index and cross mutual information had the highest R-squared value of 0.733. INTERPRETATION: EMG-derived intermuscular activation parameters demonstrated muscle co-contractions in the affected muscles and different types of intermuscular contractions during robot-assisted bilateral arm training. The modified Ashworth scale estimation based on multiple regression analysis of the activation indexes also demonstrated EMG-derived index a valuable method for assessing muscle spasticity in subjects with poststroke hemiplegia.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Eletromiografia , Hemiplegia/etiologia , Humanos , Músculo Esquelético , Músculos , Acidente Vascular Cerebral/complicações , Punho
10.
BMC Sports Sci Med Rehabil ; 13(1): 27, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741055

RESUMO

BACKGROUND: EEGs are frequently employed to measure cerebral activations during physical exercise or in response to specific physical tasks. However, few studies have attempted to understand how exercise-state brain activity is modulated by exercise intensity. METHODS: Ten healthy subjects were recruited for sustained cycle ergometer exercises at low and high resistance, performed on two separate days a week apart. Exercise-state EEG spectral power and phase-locking values (PLV) are analyzed to assess brain activity modulated by exercise intensity. RESULTS: The high-resistance exercise produced significant changes in beta-band PLV from early to late pedal stages for electrode pairs F3-Cz, P3-Pz, and P3-P4, and in alpha-band PLV for P3-P4, as well as the significant change rate in alpha-band power for electrodes C3 and P3. On the contrary, the evidence for changes in brain activity during the low-resistance exercise was not found. CONCLUSION: These results show that the cortical activation and cortico-cortical coupling are enhanced to take on more workload, maintaining high-resistance pedaling at the required speed, during the late stage of the exercise period.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33498381

RESUMO

Background: Aging may result in autonomic nervous dysfunction. Heart rate variability (HRV) is a non-invasive method to measure autonomic nervous activities. Many studies have shown that HRV contributes to the risk assessment of diseases. A Polar V800 heart rate monitor is a wearable device that measures R-R intervals, but has only been validated in younger adults under limited testing conditions. There is no validation of the V800 under mental stress or in dual task testing conditions. Therefore, this study investigated the validity of the Polar V800 heart rate monitor for assessing R-R intervals and evaluated if there were differences on HRV parameters under different situations in community-dwelling elderly adults. Methods: Forty community-dwelling elderly adults were recruited. Heart rates were recorded via electrocardiogram (ECG) and the V800 under sitting, during an arithmetic test, during a naming test, a self-selected walking velocity test (SSWV), and dual tasks (SSWV performing mental arithmetic test and SSWV performing naming test). Indices of time and frequency domains of HRV were calculated afterwards. The intra-class correlation coefficient (ICC) analysis and effect size were calculated to examine the concurrent validity between the V800 and the ECG. Results: All HRV indices from the V800 were highly correlated with the ECG under all tested conditions (ICC = 0.995-1.000, p < 0.001) and the effect size of bias was small (<0.1). Conclusion: Overall, the V800 has good validity on the assessment of HRV in community-dwelling elderly adults during sitting, mental arithmetic test, naming test, SSWV, and dual tasks.


Assuntos
Doenças do Sistema Nervoso Autônomo , Eletrocardiografia , Adulto , Idoso , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Estresse Psicológico/diagnóstico
12.
Front Physiol ; 11: 545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547418

RESUMO

Leg cycling is one of the most common modes of exercise used in athletics and rehabilitation. This study used a novel cycling setting to elucidate the mechanisms, central vs. peripheral fatigue induced by different resistance with equivalent works (watt∗min). Twelve male adults received low and relatively high resistance cycling fatigue tests until exhausted (RPE > 18) in 2 weeks. The maximal voluntary contraction, voluntary activation level, and twitch forces were measured immediately before and after cycling to calculate General (GFI), central (CFI), and peripheral (PFI) fatigue indices of knee extensors, respectively. The results showed that the CFI (high: 92.26 ± 8.67%, low: 78.32 ± 11.77%, p = 0.004) and PFI (high: 73.76 ± 17.32%, low: 89.63 ± 11.01%, p < 0.017) were specific to the resistance of fatigue protocol. The GFI is influenced by the resistance of cycling to support the equivalent dosage. This study concluded that the mechanism of fatigue would be influenced by the resistance of fatigue protocol although the total works had been controlled.

13.
Neurobiol Dis ; 132: 104605, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494286

RESUMO

Freezing of gait (FOG) is a disabling clinical phenomenon often found in patients with advanced Parkinson's disease (PD). FOG impairs motor function, causes falls and leads to loss of independence. Whereas dual tasking that distracts patients' attention precipitates FOG, auditory or visual cues ameliorate this phenomenon. The pathophysiology of FOG remains unclear. Previous studies suggest that the basal ganglia are involved in the generation of FOG. Investigation of the modulation of neuronal activities within basal ganglia structures during walking is warranted. To this end, we recorded local field potentials (LFP) from the subthalamic nucleus (STN) while PD patients performed single-task gait (ST) or walked while dual-tasking (DT). An index of FOG (iFOG) derived from trunk accelerometry was used as an objective measure to differentiate FOG-vulnerable gait from normal gait. Two spectral activities recorded from the STN region were associated with vulnerability to freezing. Greater LFP power in the low beta (15-21 Hz) and theta (5-8 Hz) bands were noted during periods of vulnerable gait in both ST and DT states. Whereas the elevation of low beta activities was distributed across STN, the increase in theta activity was focal and found in ventral STN and/or substantia nigra (SNr) in ST. The results demonstrate that low beta and theta band oscillations within the STN area occur during gait susceptible to freezing in PD. They also add to the evidence that narrow band ~18 Hz activity may be linked to FOG.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/terapia
14.
Physiol Meas ; 40(7): 075005, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31361598

RESUMO

OBJECTIVE: Sufficient sleep helps to restore the immune, nervous and cardiovascular systems, but is sometimes disturbed by sleep apnea (SA). The early diagnosis of sleep apnea is beneficial for the prevention of diseases. Polysomnography (PSG) recording provides comprehensive data for such assessment, but is not suitable for use at home due to discomfort during measurement and the difficulty of identification. This study proposes an unobtrusive measurement process by placing fiber optic sensors (FOSs) in a pillow (head-neck) or a bed mattress (thoracic-dorsal). APPROACH: We test two approaches: drop degrees from the baseline to validate the capability of catching respiratory drops, and linear regression models based on a new global measure, the percentage of the total duration of respiratory declination (PTDRD), to estimate the hand-scored apnea/hypopnea index (AHI). MAIN RESULTS: Based on data recorded from 63 adults, the drop degrees derived from respiratory signals exhibited statistical differences among central sleep apnea (CSA), obstructive sleep apnea (OSA) and normal breathing. The regression models based on the PTDRDs derived from head-neck FOS and thoracic-dorsal FOS also achieved good agreement with manually scored AHIs in Bland-Altman plots as well as oronasal airflow and thoracic wall movement. SIGNIFICANCE: The aforementioned performance demonstrates the capability of the FOS measurement and the efficacy of the PTDRD metrics for SA assessment.


Assuntos
Monitorização Fisiológica/instrumentação , Fibras Ópticas , Síndromes da Apneia do Sono/diagnóstico , Adulto , Humanos , Modelos Lineares , Pressão , Respiração , Razão Sinal-Ruído , Síndromes da Apneia do Sono/fisiopatologia
15.
J Electromyogr Kinesiol ; 44: 132-138, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30640164

RESUMO

INTRODUCTION: The purpose was to investigate the age effects on central versus peripheral sources of strength, fatigue, and central neural excitabilities. METHODS: 42 healthy subjects were recruited as young group (23.73 ±â€¯2.15 years; n = 26) and middle-aged group (57.25 ±â€¯4.57 years; n = 16). Maximum voluntary contraction force (MVC), voluntary activation level (VA), and twitch force of quadriceps were evaluated to represent general, central, and peripheral strengths. Central and peripheral fatigue indexes were evaluated using femoral nerve electrical stimulation. Cortical excitabilities were evaluated using transcranial magnetic stimulation (TMS). RESULTS: The middle-aged group had lower MVC and twitch force of quadriceps, but not VA, than young group. No between group differences were found in fatigue indexes. The cortical excitability in middle-aged group was different from young group in paired TMS with inter-stimulus interval of 7 ms. CONCLUSION: The age-related strength loss at early stage was primarily caused by peripheral muscular strength. The deviation of central neural excitability can be detected but the activation level was not impaired in middle-age adults.


Assuntos
Envelhecimento/fisiologia , Potencial Evocado Motor , Força Muscular , Músculo Esquelético/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fadiga Muscular , Músculo Esquelético/crescimento & desenvolvimento , Estimulação Magnética Transcraniana
16.
Physiol Meas ; 39(10): 105002, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30207983

RESUMO

OBJECTIVE: Falling is an important health maintenance issue for the elderly and people with movement disorders, strokes and multiple sclerosis. With the development of light, low-cost wearable technology, inertia-based fall detection has gained much attention. However, some large movements, such as jumping and postural changes, are frequently confounded with falls. For example, commonly used fall detection methods based on acceleration amplitude produce a large number of false alerts unless they are combined with post-fall posture identification. In this paper, we propose two new inertial parameters to improve the selectivity of threshold-based fall detection methods, and evaluate strategies to distinguish falls from other activities of daily life (ADLs). APPROACH: We define two new inertial parameters, acceleration cubic-product-root magnitude (ACM) and angular velocity cubic-product-root magnitude (AVCM). Along with acceleration magnitude (AM), we test threshold-based fall detection methods based on single parameters and combinations. We collected inertial data on four types of simulated falls and eight types of ADLs from a study with 15 participants wearing a chest-mounted sensor with accelerometer and gyroscope. Two public datasets, UMAFall and Cognent Labs, were also included to evaluate fall detection methods. MAIN RESULTS: We chose the detection threshold with 99% sensitivity and the best possible specificity. The hybrid of AM, ACM and AVCM method had a lower rate of misclassification than single-parameter methods. Leave-one-out cross-validation shows that the hybrid fall detection method can achieve both high specificity and high sensitivity. SIGNIFICANCE: Using multiple inertial parameters improves the specificity of fall detection.


Assuntos
Acelerometria/instrumentação , Acelerometria/métodos , Acidentes por Quedas , Algoritmos , Diagnóstico por Computador/instrumentação , Diagnóstico por Computador/métodos , Atividades Cotidianas , Fenômenos Biomecânicos , Reações Falso-Positivas , Feminino , Humanos , Masculino , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Atividade Motora , Movimento , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Tórax , Dispositivos Eletrônicos Vestíveis , Adulto Jovem
17.
Behav Brain Funct ; 14(1): 6, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534746

RESUMO

BACKGROUND: Action semantics have been investigated in relation to context violation but remain less examined in relation to the meaning of gestures. In the present study, we examined tool-gesture incongruity by event-related potentials (ERPs) and hypothesized that the component N400, a neural index which has been widely used in both linguistic and action semantic congruence, is significant for conditions of incongruence. METHODS: Twenty participants performed a tool-gesture judgment task, in which they were asked to judge whether the tool-gesture pairs were correct or incorrect, for the purpose of conveying functional expression of the tools. Online electroencephalograms and behavioral performances (the accuracy rate and reaction time) were recorded. RESULTS: The ERP analysis showed a left centro-parieto-temporal N300 effect (220-360 ms) for the correct condition. However, the expected N400 (400-550 ms) could not be differentiated between correct/incorrect conditions. After 700 ms, a prominent late negative complex for the correct condition was also found in the left centro-parieto-temporal area. CONCLUSIONS: The neurophysiological findings indicated that the left centro-parieto-temporal area is the predominant region contributing to neural processing for tool-gesture incongruity in right-handers. The temporal dynamics of tool-gesture incongruity are: (1) firstly enhanced for recognizable tool-gesture using patterns, (2) and require a secondary reanalysis for further examination of the highly complicated visual structures of gestures and tools. The evidence from the tool-gesture incongruity indicated altered brain activities attributable to the N400 in relation to lexical and action semantics. The online interaction between gesture and tool processing provided minimal context violation or anticipation effect, which may explain the missing N400.


Assuntos
Potenciais Evocados/fisiologia , Julgamento/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia , Lobo Temporal/fisiologia , Adolescente , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
18.
Medicine (Baltimore) ; 96(42): e8340, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29049251

RESUMO

BACKGROUND: Rapid increases in desflurane concentration can transiently increase the heart rate (HR). Esmolol possesses a high ß1-adrenoceptor selectivity and a short duration of action. This preliminary study aimed at investigating the effects of esmolol on the HR and autonomic modulation during a desflurane-induced HR increase. METHODS: American Society of Anesthesiologists physical status I female subjects, aged 20 to 50 years, who were undergoing minor breast surgery were randomly assigned to 2 groups. Rapid increases in desflurane concentration were commenced after induction of anesthesia. Each subject received either i.v. saline (control group) or esmolol 0.5 mg/kg (esmolol group) before desflurane inhalation. Using time-frequency spectral analysis of HR variability, the HR indices were studied at baseline, postinduction, posttreatment, as well as at minimal alveolar concentrations of desflurane reaching 1.0, 1.3, and 1.5. The low frequency (LF) power is influenced by both the sympathetic and parasympathetic activity, whereas the high frequency (HF) power reflects the parasympathetic activity. The LF/HF ratio is thought to reflect either sympathovagal balance or sympathetic modulation. RESULTS: Electrocardiograms for data analysis were obtained from 8 subjects in each group. Rapid increases in desflurane concentration after induction caused a HR increase. Both the corresponding LF and HF powers were low and the LF/HF ratio remained unchanged. This indicates that the desflurane-induced HR increase may be attributed to parasympathetic inhibition and may be independent of sympathetic activation. Esmolol pretreatment effectively attenuated desflurane-induced HR increase. Moreover, subjects receiving esmolol pretreatment had increased LF and HF powers, but did not have changes in their LF/HF ratios, as compared to those without esmolol. CONCLUSION: Esmolol pretreatment attenuates HR increase and parasympathetic inhibition during rapid increases in desflurane concentration.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Frequência Cardíaca/efeitos dos fármacos , Isoflurano/análogos & derivados , Sistema Nervoso Parassimpático/efeitos dos fármacos , Propanolaminas/farmacologia , Adulto , Desflurano , Eletrocardiografia , Feminino , Humanos , Isoflurano/efeitos adversos , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
19.
Sensors (Basel) ; 15(7): 16372-87, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198231

RESUMO

Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.


Assuntos
Pletismografia de Impedância/métodos , Respiração , Processamento de Sinais Assistido por Computador , Tórax/fisiologia , Humanos , Modelos Estatísticos , Monitorização Fisiológica
20.
PLoS One ; 10(6): e0130798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26115515

RESUMO

In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases.


Assuntos
Teste de Esforço/instrumentação , Fadiga Muscular/fisiologia , Adulto , Eletromiografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Humanos , Masculino , Modelos Biológicos , Monitorização Fisiológica/instrumentação , Esforço Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...